NEW MINERALS APPROVED IN 2007
NOMENCLATURE MODIFICATIONS APPROVED IN 2007
BY THE
COMMISSION ON NEW MINERALS, NOMENCLATURE AND CLASSIFICATION
INTERNATIONAL MINERALOGICAL ASSOCIATION

Ernst A.J. Burke* (Chairman, CNMNC) and Frédéric Hatert** (Vice-Chairman, CNMNC)

*Faculteit der Aard- en Levenswetenschappen, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, Netherlands — ernst.burke@falw.vu.nl
**Laboratoire de Minéralogie, Université de Liège, B-4000 Liège, Belgium – fhatert@ulg.ac.be

The information given here is provided by the Commission on New Minerals and Mineral Names, I.M.A., for comparative purposes and as a service to mineralogists working on new species.

Each mineral is described in the following format:
IMA number
Type locality
Corresponding author
Chemical formula
Relationship to other minerals
Crystal system, Space group; Structure determined, yes or no
Unit-cell parameters
Strongest lines in the X-ray powder-diffraction pattern

The names of these approved species are considered confidential information until the authors have published their descriptions or released information themselves.

NO OTHER INFORMATION WILL BE RELEASED BY THE COMMISSION

PROPOSALS APPROVED IN NOVEMBER 2007

IMA No. 2007-034
Luobusa mine, Qusong County, Tibet, China
Fang Qinsong
WC
Hexagonal: P6 m2
a 2.902, c 2.831 Å
2.833(44), 2.511(94), 1.878(90), 1.449(25), 1.291(36), 1.233(22), 1.149(23), 0.9008(23)

IMA No. 2007-035
Luobusa mine, Qusong County, Tibet, China
Shi Nicheng
(Cr4Fe4Ni)32C4
Hexagonal: P63mc; structure determined
a 18.839, c 4.4960 Å
6.920(100), 4.530(35), 3.596(55), 2.493(36), 2.023(98), 1.998(32), 1.825(47), 1.798(45)
IMA No. **2007-036**
Luobusa mine, Qusong County, Tibet, China
Li Guowu
TiFeSi$_2$
Orthorhombic: *Pbam*; structure determined
\[a = 8.6053, \quad b = 9.5211, \quad c = 7.6436 \ \text{Å} \]
3.822(35), 2.294(18), 2.230(97), 2.124(100), 2.098(43), 1.911(44), 1.829(19), 1.292(19)

IMA No. **2007-037**
Horoman, Samani-cho, Samani-gun, Hokkaido, Japan
Arashi Kitakaze
Fe$_6$Ni$_3$S$_8$
Tetragonal: *P4/mmm*
\[a = 8.707, \quad c = 10.439 \ \text{Å} \]
6.160(10), 3.080(100), 2.955(32), 2.435(6), 1.984(25), 1.947(51), 1.825(60), 1.805(54)

IMA No. **2007-038**
Horoman, Samani-cho, Samani-gun, Hokkaido, Japan
Arashi Kitakaze
Cu$_2$Fe$_5$Ni$_2$S$_8$
Tetragonal: *P4$_2$/mmm*
\[a = 10.089, \quad c = 10.402 \ \text{Å} \]
5.880(15), 3.118(100), 3.050(20), 2.703(5), 1.981(5), 1.873(25), 1.844(50), 1.595(45)

OLDER PROPOSALS

IMA No. **89-035a**
Glücksstern mine, Gottlob Hill, Friedrichroda, Thüringen, Germany
Thomas Witzke
LaVO$_4$
Xenotime group
Tetragonal: *I4$_1$/amd*; structure determined
\[a = 7.406, \quad c = 6.504 \ \text{Å} \]

IMA No. **2007-019**
Matsumaezawa pit, Tanohata mine, Tanohata Village, Iwate Prefecture, Japan
Hidemichi Hori
LiMn$_2$Si$_3$O$_8$(OH)
Wollastonite group
Triclinic: *P\̅1*
\[a = 7.612, \quad b = 7.038, \quad c = 6.700 \ \text{Å}, \quad \alpha = 90.23, \quad \beta = 94.70, \quad \gamma = 105.26^{\circ} \]
6.640(35), 3.666(26), 3.134(89), 3.109(69), 2.946(100), 2.814(33), 2.581(22), 2.182(40)