THE NAMING OF MINERAL SPECIES APPROVED BY THE COMMISSION ON NEW MINERALS AND MINERAL NAMES OF THE INTERNATIONAL MINERALOGICAL ASSOCIATION: A BRIEF HISTORY

JEFFREY DE FOURESTIER

Department of National Defence, DOL, MGen George R. Pearkes Building, Ottawa, Ontario K1A 0K2, Canada

ABSTRACT

I present an overview of the origins and the history of the CNMMN, the naming of mineral species and the IMA system of numbering those new species. Where published, the equivalence between an IMA number and a name or composition is provided. I discuss the manner in which these IMA numbers came to be published, as they were originally confidential, and many still are. I highlight the role of various individuals in creating the system for naming mineral species as it exists today.

Keywords: Commission on New Minerals and Mineral Names, CNMMN, Committee on Nomenclature and Classification of Minerals, grandfather clause, history, IMA, IMA numbers, International Mineralogical Association, nomenclature.

SOMMAIRE

(Traduit par la Rédaction)

Mots-clés: Commission des Nouveaux Minéraux et des Noms de Minéraux, CNMMN, Comité sur la Nomenclature et la Classification des Minéraux, clause de droits acquis, histoire, Association internationale de Minéralogie, IMA, numéro de dossier IMA, nomenclature.

INTRODUCTION

Minerals have been given names since the beginning of recorded history. Only in the last half century has there been a concerted effort on an international basis to regulate the nomenclature of minerals. It has now become an established procedure in any description of a new mineral species to submit a complete proposal to the Commission on New Minerals and Mineral Names (CNMMN) of the International Mineralogical Association (IMA). Only once approval is granted can the paper describing the new species be published. At that point, authors are asked to make mention that approval of the mineral and the new name has been granted. In this article, I deal with the historical development of this process, and how it has evolved since the founding of the IMA. I also deal with the “IMA number”, what this number entails and how it came to be. I have adopted the practice of Michael Fleischer, Max Hey and François Permingeat of writing approved names in bold and a practice common in Europe of capitalizing mineral names to make them more apparent and to visually distinguish them from names not approved by the CNMMN. Where a name of a mineral species is not IMA-approved, the name is shown in quotation marks in this paper.

HISTORICAL ASPECTS

The International Mineralogical Association was founded by a group of mineralogists from around the world at a meeting in Madrid in 1958. The CNMMN, one of the original eight commissions, was founded in 1959. It is probably the most recognizable of the com-

E-mail address: defourestier.jd@forces.ca
missions to both amateur and professional mineralogists, as it deals with the approval and naming of mineral species and has final jurisdiction on the nomenclature of all minerals, as defined by the CNMMN. The founding of the CNMMN marked a turning point in the history of mineral nomenclature. Up until that time, the naming of minerals had been a haphazard and inexact aspect of our science at best. This new commission had at the heart of its mandate to put order into many centuries of conflicting and divergent methods of giving names to naturally occurring chemical substances. There clearly had been less-than-adequate agreement on what constituted a mineral at that time, and of course in preceding years. In fact, many mixtures of minerals and most biogenic substances, such as amber or coal, were included in early treatises on minerals. Note that the definition of what constitutes a mineral has changed over the years. The currently accepted definition was published by Nickel (1995).

Before the founding of the IMA and its various commissions, the naming of a mineral typically was done by the person (not necessarily a scientist) who found the material, unfettered by any prescribed set of rules. The descriptions varied greatly according to the skill of the discoverer first describing the mineral, the political climate, the place of residence, language, and the ability to obtain and exchange information on the newly found minerals. The literature is full of procedural models with respect to nomenclature and an enormous number of superfluous, erroneous or fanciful names.

One of the earliest models for a system of the nomenclature of minerals was proposed in the 18th century by Carl von Linné, who tried to apply a system of two Latin words, as had been developed for fossils and all living things. This system was used for a time but fell out of use for minerals. It is still the system of classification in use for fossils and biological taxonomy.

A more recent attempt to develop a universal system for the naming of minerals is that of Povarennykh (1972). The model he proposed to the mineralogical community in his book **Crystal Chemical Classification of Minerals** would maintain a one-word name with “ite” as a suffix, but the name itself would reflect the chemical composition and crystallography of the mineral. In his system, which was not formally presented to nor adopted by the CNMMN, Povarennykh even proposed the renaming of all known minerals as well as a chemical redefinition of many of them.

Before the CNMMN

A significant event occurred on a national level in the United States, in December of 1920, at the first annual meeting of the Mineralogical Society of America (MSA). A “Committee on Nomenclature and Classification of Minerals” (CNCM) was struck in order to bring some order to the naming of mineral species. This committee submitted its preliminary report in 1921 and published its first full report in December 1922 (Foshag et al. 1923). The issues being discussed then by the committee members represent the first attempts to bring a logical and ordered procedure to the naming of minerals, albeit at a national level.

At a meeting of the British Association for the Advancement of Science, held in Toronto on August 8, 1924, Leonard J. Spencer of the British Museum (Natural History) presented a paper outlining the need for an international committee (...) in order to arrive at the best names and terms for international use.” He added, “science is world-wide, and its language should, as far as possible, be adapted to meet international needs”, in order to avoid confusion. In his notes, Spencer indicated that he discussed the advantages of his ideas with “several American mineralogists” in Washington (Spencer 1925).

The second CNCM report was published in 1936 (Kerr 1936) following its presentation at the 16th meeting of the MSA, a full thirteen years after the first report. Kerr’s report is of interest because committee members discussed concrete efforts to come to some international agreement. Three meetings of the CNCM had been held: the first in Toronto (1930), and the second and third in Washington in 1933 and 1935, respectively. A key player was L.J. Spencer who tried, together with other members of the Mineralogical Society of Great Britain and Ireland and his counterparts at the MSA, to achieve agreement of “English-speaking peoples” on mineral nomenclature.

Although not totally successful, the committee did report that some joint agreement among the Americans, British and Canadians did emerge. Note that as the Mineralogical Association of Canada was founded in 1955, Canadian mineralogists could either join the Mineralogical Society of America or be elected to membership in the Mineralogical Society (UK). At the first meeting in Toronto, it was agreed that no recommendation would be made unless the committee approved it unanimously, that any changes should be simple and clear, and that well-established practice should not be changed. Spencer stated, “It is not the slightest use to propose any drastic changes.” The desire for international cooperation with a conservative approach has continued to this day. In fact, the mineral names approved in that report of mineral species (Kerr 1936), with only minor exceptions, have become part of accepted nomenclature.

One sees in these reports the beginnings of what would one day become the CNMMN. It did not take long, in fact, before it became clear that the proposed changes were insufficient. The idea for the creation of the CNMMN had been launched, but it would only come to fruition many years later, after the end of World War II.

In the 1950s, the turning point was at hand. Max Hey, of the British Museum (Natural History), published his seminal work **An Index of Mineral Species and Varieties Arranged Chemically** (1955). This book (also
known as "Hey's Index") helped put order to the myriad of names that the CNMMMN would inherit at its birth by the end of the very same decade.

Spencer, in many ways the spiritual father of the CNMMMN, lived long enough to witness the creation of the IMA and the CNMMMN; he died in April of 1959, shortly after the Commission’s first meeting. His legacy was comprised of countless mineral abstracts, and lists on new minerals and mineral names (Nos. 1–21) published by the Mineralogical Society (UK).

After the creation of the CNMMMN

Initial reports of the CNMMMN followed a form similar to that of the first report of the American CNCM mentioned above. The main differences were that the names of countries represented by voting members and the number of votes for and against new mineral names were recorded. Unfortunately, the names of the voting representatives were not recorded for posterity.

The first report of the CNMMMN was made at the second general meeting of the IMA in Copenhagen in 1960. In all, representatives from six countries (Bulgaria, Canada, France, Japan, the United Kingdom and the United States) voted on the new minerals named in the list. Interestingly, half of the voting members came from countries that were also involved in Spencer’s original effort to get such a committee formed. In these days, votes were cast in person at the IMA meeting, not by mail or by e-mail as is done now. Presumably the voting was accompanied by an airing of contentious issues in a way that is not possible today.

The first Chairman of the CNMMMN was Michael Fleischer (United States), the first Vice-chairman of the Commission was Max Hey (United Kingdom), and the first Secretary was François Permingeat (France). All played key roles in the founding of the IMA. By the time the second list was voted on, Germany, India and Italy had joined the other voting members on the committee. It was not until 1972 that the Soviet Union, a founding member of the IMA, had a voting representative on the CNMMMN (although it had already established a national commission).

From the beginning of the CNMMMN, the IMA published lists of new minerals. The lists prepared by François Permingeat are the most complete and contain the only public record to date of votes cast in favor or against proposals for new mineral species. Permingeat also included information on minerals that was published before they received CNMMMN approval, and votes on discreditations. As well, his lists include the number of abstentions and, in earlier reports, the date the lists were prepared and the site of CNMMMN meetings at which the votes took place.

During the first years, the role of the CNMMMN in the naming of minerals was somewhat secondary, as most authors did not submit themselves to the IMA’s authority. Of the new minerals approved by the Commission on the third list, in 1961 (Table 1), none had been approved by the CNMMMN before publication. In the 1966 list, 26 new mineral names were approved by the CNMMMN before publication, but an additional ten were approved only after the name had been published. Still another 27 names that were already in the published record were rejected by the CNMMMN! These statistics show that the CNMMMN still had some way yet to go to fulfill its mandate. That said, some of the minerals that were rejected were eventually identified as distinct species. On the 1966 list, Perryite was eventually accepted, and “Orthorhombic lavenite” was eventually described as Burpalite, for example.

The situation continued to improve so that when the 1972 list was published in 1974, the name of only one of the 38 new minerals had appeared in the literature before being approved by the CNMMMN. The last list (1979) was published by the CNMMNN in 1982. After that, the lists of new mineral species were published in the literature with a comment indicating that they had been approved by the CNMMNN prior to publication.

Following the publication of the last CNMMNN list in 1982 until 1991, the IMA did not publish any further reports with respect to new mineral species. If one wanted information on new species, one had to rely on individual descriptions of such species in the literature or on the lists of new mineral species published periodically in the Mineralogical Magazine. Whereas such compilations were published in other journals, the Commission specifically used those lists published in the Mineralogical Magazine from the very beginning, starting in 1961 with list No. 22 (when Hey, then the CNMMNN Vice-chairman, took over the preparation of the lists from Spencer), for disclosure of details other than the name. In these lists, the names of recognized

<table>
<thead>
<tr>
<th>List</th>
<th>Date prepared</th>
<th>No. of new minerals</th>
<th>No. of voting representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>15 March 1961</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>1960</td>
<td>6 October 1961</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>1961</td>
<td>15 July 1961</td>
<td>29</td>
<td>10</td>
</tr>
<tr>
<td>1962</td>
<td>12 April 1965</td>
<td>49</td>
<td>13</td>
</tr>
<tr>
<td>1964</td>
<td>2 September 1967</td>
<td>33</td>
<td>10–16</td>
</tr>
<tr>
<td>1965</td>
<td>?</td>
<td>41</td>
<td>12–15</td>
</tr>
<tr>
<td>1966</td>
<td>June 1966</td>
<td>35</td>
<td>13–17</td>
</tr>
<tr>
<td>1967</td>
<td>New 1967</td>
<td>48</td>
<td>13–19</td>
</tr>
<tr>
<td>1968</td>
<td>29 August 1970</td>
<td>38</td>
<td>14–20</td>
</tr>
<tr>
<td>1969</td>
<td>June 1970</td>
<td>57</td>
<td>5–50</td>
</tr>
<tr>
<td>1972</td>
<td>17 September 1974</td>
<td>38</td>
<td>13–22</td>
</tr>
<tr>
<td>1973</td>
<td>?</td>
<td>48</td>
<td>13–21</td>
</tr>
<tr>
<td>1975</td>
<td>?</td>
<td>42</td>
<td>15–22</td>
</tr>
<tr>
<td>1977</td>
<td>?</td>
<td>55</td>
<td>14–21</td>
</tr>
<tr>
<td>1978</td>
<td>6</td>
<td>22</td>
<td>2–22</td>
</tr>
<tr>
<td>1979</td>
<td>?</td>
<td>70</td>
<td>14–20</td>
</tr>
</tbody>
</table>

1 The number of voting members varied depending on the number.
species are in bold, but there is no information with respect to the outcome of the voting. During this period, lists No. 32 (1982) through No. 36 (1990) were published in the Mineralogical Magazine, and span the editorships of Max Hey and A.M. Clark.

Grandfather clause

The CNMMN continued the effort of the CNCM of “grandfathering” minerals that were well established in the literature. The “grandfather” clause was a practice by which names created before the establishment of a duly constituted nomenclature body could be adopted into officially recognized body of mineral names without having to go through the same procedures required for new names. It is interesting to note that there was significant division in the early debates within the CNCM. In its first report, 38 minerals were “grandfathered” including “water” and “Ice". As well, the majority of the committee members wanted to standardize the names of minerals from Dana’s System by adding “ite”. None of the names from the standardized list have been adopted by the CNMMN, whereas all the Dana names have been subsequently “grandfathered” without alteration (Foshag et al. 1923).

Minerals to which the “grandfather” clause was to be applied were those minerals that were already well described and generally accepted. They were not resubmitted for approval and consequently did not receive an IMA number. Minerals that could not be properly discredited (where, for example, type material could not be located) were also subject to a “grandfather” clause. As a result, some minerals of dubious validity still enjoy recognized status.

Important to this effort to “grandfather” mineral names was the publication of Michael Fleischer’s Index of new mineral names, discredited minerals and changes of mineralogical nomenclature in volumes 1–50 of The American Mineralogist in 1966. This index was the precursor of what was to become his Glossary of Mineral Species in 1986. The Fleischer’s Glossary of Mineral Species was the publication of Michael Fleischer's 'Glossary of Mineral Species' in 1966 and approved by the IMA in 1971, became part of current usage after Michael Fleischer integrated it into his Glossary of Mineral Species in 1986. The Levinson modifier was originally meant to apply to rare-earth elements and was added to the name with a hyphen and enclosed in parentheses, e.g., Aeschynite-(Y), Allanite-(Ce). Since then the rule has been expanded to include other elements as modifiers, again with a hyphen, no commas but with or without parentheses, e.g., Jahnsite-(CaMnMn), Chabazite-Sr, Labuntsovite-Mn. This rule has increased in importance as whole groups of minerals have been recently re-examined and renamed in some cases, e.g., the Zeolite group, the Labuntsovite group.

The paper by Max Hey and Glauco Gottardi in 1980 set down the CNMMN’s position with respect to other modifiers such as prefixes, suffixes and adjectival modifiers. Their article greatly restricted the use of these modifiers, but is not as stringently adhered to in the literature as it should be. In fact, the incorrect use of modifiers is one of the largest sources of objectionable mineral names entering the literature. A good example of the problem is the use of chemical modifiers with proper mineral names. The author of a recent paper cited “Zn-spinel” in the title and text, also called it “zincian spinel” in the text (Chattopadhyay 1999). The adjoining chemical formula, (Zn,Fe,Mg)Al₂O₄ (clearly not Spinel), showed that if the CNMMN rules had been properly adhered to, the first term should not have been used; the mineral should have been referred to as “ferroan magnesian Gahnite”. Although Gahnite is a zinc-dominant member of the spinel group, to call it “zincian spinel” in a paper in a mineralogical journal is imprecise and misleading.

It is now rare (but not unheard of) that a new mineral name makes it into the literature without following CNMMN procedures. Where it does occur, authors can expect to be “rapped on the knuckles” by the international mineralogical community.

Recent History

Since the creation of the CNMMN, nomenclature itself has continued to evolve as technological advances allowed scientists to make more accurate studies of minerals and mineral groups. Old mineral names have in some instances been discredited as names of individual species, e.g. “Biotite”, “Hornblende”, and some are in fact revalidated, e.g., Aerinite, Pseudorutile (Nickel & Grice 1998).

New understanding of the chemical makeup of minerals at the atomic level has led to the use of modifiers, in some cases causing names to be changed. In particular, the Levinson modifier, proposed by Alfred Levinson in 1966 and approved by the IMA in 1971, became part of current usage after Michael Fleischer integrated it into his Glossary of Mineral Species in 1986. The Levinson modifier was originally meant to apply to rare-earth elements and was added to the name with a hyphen and enclosed in parentheses, e.g., Aeschynite-(Y), Allanite-(Ce). Since then the rule has been expanded to include other elements as modifiers, again with a hyphen, no commas but with or without parentheses, e.g., Jahnsite-(CaMnMn), Chabazite-Sr, Labuntsovite-Mn. This rule has increased in importance as whole groups of minerals have been recently re-examined and renamed in some cases, e.g., the Zeolite group, the Labuntsovite group.

The paper by Max Hey and Glauco Gottardi in 1980 set down the CNMMN’s position with respect to other modifiers such as prefixes, suffixes and adjectival modifiers. Their article greatly restricted the use of these modifiers, but is not as stringently adhered to in the literature as it should be. In fact, the incorrect use of modifiers is one of the largest sources of objectionable mineral names entering the literature. A good example of the problem is the use of chemical modifiers with proper mineral names. The author of a recent paper cited “Zn-spinel” in the title and text, also called it “zincian spinel” in the text (Chattopadhyay 1999). The adjoining chemical formula, (Zn,Fe,Mg)Al₂O₄ (clearly not Spinel), showed that if the CNMMN rules had been properly adhered to, the first term should not have been used; the mineral should have been referred to as “ferroan magnesian Gahnite”. Although Gahnite is a zinc-dominant member of the spinel group, to call it “zincian spinel” in a paper in a mineralogical journal is imprecise and misleading.

It is now rare (but not unheard of) that a new mineral name makes it into the literature without following CNMMN procedures. Where it does occur, authors can expect to be “rapped on the knuckles” by the international mineralogical community.
EVOLUTION TOWARD THE PRESENT PROCEDURE

When the IMA met in Copenhagen in 1960, the Council of the IMA entrusted the Commission on New Minerals and Mineral Names with three tasks. These have been the guiding principles in dealing with nomenclature issues ever since. They are: 1) Review all proposed changes in nomenclature (new names, discreditations, and changes in definitions) before publication if possible in order to avoid the publication of non-valid or undesirable names, 2) prepare an annual list of changes in nomenclature, vote on them, and publish the lists with indications of the commission’s approval or disapproval, and 3) endeavor to attain international uniformity in nomenclature as far as may be practicable (Anonymous 1962a).

Although the CNMMN did publish a list of desired data and essential minimum data required for the acceptance of a new mineral in 1961 (Fermingeat 1961), the first outline of a procedure for the naming of new mineral species published by the IMA, a one-page list of six points, was prepared by Michael Fleischer in 1970. Before this paper was published, the procedure for the preparation of proposals was given orally at IMA meetings, and for the first time at the first meeting of the CNMMN in 1960. The first rules and procedures of the Commission were established at that meeting (Dunn & Mandarino 1988). The 1976 procedure put an end to the publication of mineral names that were submitted to the CNMMN and subsequently disapproved. It also allowed for the referral of opaque minerals to the Commission on Ore Minerals for comments.

The 1984 Rules of procedure of the Commission on New Minerals and Mineral Names (Mandarino et al. 1984) were an update to the 1970 procedure. The number of points doubled to twelve in total. The collection of papers relating to nomenclature issues that had been published before 1987 were condensed into the Procedures involving the IMA Commission on New Minerals and Mineral Names and guidelines on mineral nomenclature published in various journals in 1987 by Nickel and Mandarino. In particular, their account draws from the guidelines in the naming of minerals by Schaller (1930), Levinson (1966), Bailey (1978), Hey & Gottardi (1980), Bailey et al. (1981) and Guinier et al. (1984). The 1987 Procedure superseded the 1984 paper and incorporated new decisions of the CNMMN in the years since Fleischer’s 1970 paper. It is far more comprehensive and gives guidelines on the proper naming of minerals in greater detail.

In time for the IMA meeting in Toronto in 1998, exactly 74 years after Spencer put forward the idea of an international body to standardize the naming of minerals in the same city, Nickel & Grice (1998) published the Procedure and Guidelines on Mineral Nomenclature. This document superseded the report of Nickel & Mandarino (1987) and took into consideration changes in the intervening years, such as the new definition of a mineral (Nickel 1995). At the same meeting, the host organization, the Mineralogical Association of Canada (MAC), distributed a compendium of all the major IMA papers related to the naming of minerals (Martin 1998).

In its aim of promoting IMA-recognized nomenclature, the MAC had already published one book containing all IMA-recognized names, the *Encyclopedia of Mineral Names* and was preparing the publication of a second book, the *Glossary of Mineral Synonyms*, complementary to the first in providing for all unrecognized names their IMA-recognized equivalent.

The present procedures, as outlined by Nickel & Grice (1998), cover the various types of chemical substances that can be found in nature (with or without the influence of man), including minerals as defined by the CNMMN, biogenic compounds, anthropogenic and technogenic compounds, amorphous materials, polymorphs, polytypes and interstratifications. It lays out the requirements for approval once a submission is made to the CNMMN. The submission goes to the CNMMN, and normally, representatives have 60 days to vote on the proposal, each of which is given its own IMA number upon receipt. As well, procedures are included for the redefinition, discreditation or the revalidation of previously discredited minerals. On occasion, depending on the nature of the mineral, the approval process may take much longer. Guidelines for the choosing of a mineral name are given. They state that the choice of a name is largely the responsibility of the author. A name previously used in the literature may not have been in common usage for at least 50 years. Once a mineral is approved, the author is given two years to publish the new name and description of the new species.

At present, there are ten approved minerals that have not been described in a publication within the two-year time limit (Table 2). In fact, most are over three years, the longest being 10 years! The authors of the 1998 IMA procedure clearly state that descriptions “not published within that time (...) are no longer considered as approved.” Proposals can remain approved if the Chairman of the CNMMN grants an extension. Although no exact numbers have been calculated of the number of

<table>
<thead>
<tr>
<th>Table 2: Cases in which the publication officially retaining a new mineral species has not appeared within the regulation two-year time limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>92-016</td>
</tr>
<tr>
<td>92-076</td>
</tr>
<tr>
<td>92-084</td>
</tr>
<tr>
<td>92-096</td>
</tr>
<tr>
<td>04-062</td>
</tr>
<tr>
<td>92-420</td>
</tr>
<tr>
<td>97-015</td>
</tr>
<tr>
<td>99-015</td>
</tr>
<tr>
<td>99-023</td>
</tr>
<tr>
<td>99-065</td>
</tr>
</tbody>
</table>

authors that have not respected the two-year time line, only a relatively small number of authors go over the time limit. As the IMA does not publish how many have not respected the time limit and have not been granted an extension, the exact number of “delinquent” mineral species, let alone who the authors are, will probably never be known. In the same way that minerals approved by the CNMMN are published with an IMA number, those authors that have broken the rule on publication and the minerals that have thereby lost their approved status should also be published with the IMA number so that any other mineralogists wishing to make a description of the mineral from a different find would not be blocked from doing so.

The IMA Numbers

IMA numbers started to be given to new mineral submissions in 1962 when the CNMMN was under the chairmanship of the late Michael Fleischer (E.H. Nickel, pers. commun., 2002). As a general rule, IMA numbers originally were not meant to appear in publications and were purely administrative in nature. These numbers were not published until Joseph A. Mandarino, Chairman of the CNMMN from 1983 through 1994, started to make them public for the first time in 1991 in the Mineralogical Magazine. It was decided that it would be helpful to people working on new species to know if the species of interest had already gone through the CNMMN of the IMA. However, the Commission did not feel that it could release the names of the approved species before the descriptions had been published (J.A. Mandarino, pers. commun., 2002). The Commission had hoped that “the major mineralogical journals” would publish the lists “on a quarterly or semi-annual basis.” However, they have been published annually ever since, and it is unlikely that this practice will change (Mandarino 1991). Currently, such lists are published in American Mineralogist, Canadian Mineralogist, European Journal of Mineralogy, Zapiski Vserossiiskovo Mineralogicheskovo Obshchestva and Mineralogical Magazine. (Some of the aforementioned journals have not published all the lists; other journals have also published some of these lists.) Some IMA numbers from before J.A. Mandarino started publishing numbers in 1991 have appeared in print and thereby have become part of the public domain. They are reproduced here (Table 3).

Since the first published list of IMA numbers in 1991, the IMA submission numbers that have appeared in the literature are for approved minerals only. The earliest number that has made it into the literature dates from 1978. Consequently, the list compiled in Table 3 contains only the numbers that have appeared publicly with their subsequent official mineral name. Table 4 contains the chemical formula for those cases where a name has not yet been published within the stipulated two-year time limit. The number itself consists of two parts. The first part represents the year in which the submission was received, not the year the mineral was approved. The second part is attributed according to the order in which the submission was received. This system explains numerical gaps in the list; not all submissions are approved. Since “Y2K”, the first part of the number has been expanded to four digits from the original two. As a result, some of the numbers published before the year 2000 can be found in the literature in both five and seven digit formats.

It should be noted that modifications to mineral nomenclature, such as discreditations and revalidations, employ a different numbering system. These numbers have generally not been published in the open literature (E.H. Nickel, pers. commun., 2002). Redefinitions that result in a new mineral name also bear a distinctive IMA number. These consist of the year in which the submission was made followed by a hyphen and a capital letter. So far, the only published examples of this type of number are for Paralabuntsovite-Mg, Orthojoaquinite-La and Hellandite-Ce, i.e., 2000–A, 2000–D, 2000–F (Chukanov et al. 2002, Matsubara et al. 2001, Oberti et al. 2002). A lower-case ‘a’ following the number (e.g., 93–027a) indicates that the proposal for the new mineral species was resubmitted to the Commission before being finally published (G. Ferraris, pers. commun., 2002).

List of published IMA numbers

As some mineralogists follow very closely minerals initially published under an IMA number only, and as some of the information issued by the CNMMN can be somewhat different when the complete mineral description is finally published, it is my view that it is useful for the authors of the description to make mention of the IMA number so that interested mineralogists can make a cross-reference of the published information. Some minerals are preliminarily described as unknowns with a reference to an IMA number (de Fourrestier 1999). Some Web sites contain lists of published IMA numbers with the accordant mineral name, e.g., Mineralogy Database by David Barthelmy (http://webmineral.com), but these lists are incomplete and contain errors.

The CNMMN itself at present does not publish the accepted names with the concordant IMA number. Consequently, Table 3 provides a correlation between the original anonymous preliminary description, published in the IMA–CNMMN lists from 1991 to present, and the subsequent full published descriptions, which can be accessed by the name of the new mineral species listed next to the number. Other IMA numbers, published Joseph A. Mandarino, also are included, so that the list contains mineral species already described in the literature (Table 3) and those that will be described within the regulation two-year delay after approval (Table 4). These tables provide a complete and compre-
<table>
<thead>
<tr>
<th>Year</th>
<th>IMA Number</th>
<th>Mineral Name</th>
<th>Approved Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>63-008 = Moorhouseite</td>
<td>70-034 = Gittinsite</td>
<td>1978</td>
</tr>
<tr>
<td></td>
<td>63-008 = Aplowite</td>
<td>70-035 = Pellyite</td>
<td>1978</td>
</tr>
<tr>
<td>1964</td>
<td>71-014 = Larosite</td>
<td>78-023 = Spionkopite</td>
<td>1978</td>
</tr>
<tr>
<td></td>
<td>71-020 = Cuprospinel</td>
<td>78-028 = Prosperite</td>
<td>1978</td>
</tr>
<tr>
<td>1965</td>
<td>71-028 = Haycockite</td>
<td>78-032 = Keithconnite</td>
<td>1978</td>
</tr>
<tr>
<td></td>
<td>71-037 = Jamborite</td>
<td>78-047 = Gaitite</td>
<td>1978</td>
</tr>
<tr>
<td>1966</td>
<td>64-019 = Latrappite</td>
<td>78-056 = Nickelbischofite</td>
<td>1978</td>
</tr>
<tr>
<td></td>
<td>65-013 = Berryite</td>
<td>78-071 = Sabinaite</td>
<td>1978</td>
</tr>
<tr>
<td></td>
<td>65-029 = Gaspéite</td>
<td>78-075 = Povondraite</td>
<td>1978</td>
</tr>
<tr>
<td>1967</td>
<td>66-012 = Mckinstryite</td>
<td>79-019 = Wicksite</td>
<td>1979</td>
</tr>
<tr>
<td></td>
<td>66-015 = Madocite</td>
<td>79-024 = Megillite</td>
<td>1979</td>
</tr>
<tr>
<td></td>
<td>66-016 = Veenite</td>
<td>79-045 = Tancoite</td>
<td>1979</td>
</tr>
<tr>
<td></td>
<td>66-017 = Twinnite</td>
<td>79-063 = Petarasaite</td>
<td>1979</td>
</tr>
<tr>
<td></td>
<td>66-018 = Guettardite</td>
<td>73-001 = Jagowerite</td>
<td>1980</td>
</tr>
<tr>
<td></td>
<td>66-019 = Playfairite</td>
<td>73-003 = Gaidonnayite</td>
<td>1980</td>
</tr>
<tr>
<td></td>
<td>66-020 = Sterryite</td>
<td>80-021 = Stibivanite</td>
<td>1980</td>
</tr>
<tr>
<td></td>
<td>66-021 = Launayite</td>
<td>80-033 = Spertiniite</td>
<td>1980</td>
</tr>
<tr>
<td></td>
<td>66-032 = Sorbyite</td>
<td>80-034 = Pararealgar</td>
<td>1980</td>
</tr>
<tr>
<td>1968</td>
<td>73-048 = Sudburyite</td>
<td>80-041 = Doyleite</td>
<td>1981</td>
</tr>
<tr>
<td>1969</td>
<td>75-012 = Kulanite</td>
<td>81-002 = Nahpoite</td>
<td>1981</td>
</tr>
<tr>
<td></td>
<td>75-016 = Cowlesite</td>
<td>81-006 = Franconite</td>
<td>1981</td>
</tr>
<tr>
<td></td>
<td>75-018 = Temagamite</td>
<td>81-011 = Sturmanite</td>
<td>1981</td>
</tr>
<tr>
<td></td>
<td>75-032 = Agressite</td>
<td>1982</td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>75-027 = Baricite</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75-029 = Rucklidgeite</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>76-027 = Dresserite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76-023 = Langisite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76-024 = Mariite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76-034 = Penikisite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76-036 = Hydrodresserite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76-037 = Cernyite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>76-057 = Cernyite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76-056 = Satterlyite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76-057 = Cernyite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76-056 = Satterlyite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-005 = Strontiodresserite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-026 = Boyleite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-049 = Mandarinite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-049 = Mandarinite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-049 = Mandarinite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-049 = Mandarinite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-049 = Mandarinite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-049 = Mandarinite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-049 = Mandarinite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-049 = Mandarinite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-049 = Mandarinite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-030 = Gormanite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-049 = Mandarinite</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td>84-024</td>
<td>Georgechaoite</td>
<td>88-032</td>
<td>Komkovite</td>
</tr>
<tr>
<td>84-033</td>
<td>Perraulite</td>
<td>88-035</td>
<td>Lithiomarsturite</td>
</tr>
<tr>
<td>84-035</td>
<td>Rapidcreekite</td>
<td>88-037</td>
<td>Voggite</td>
</tr>
<tr>
<td>84-055</td>
<td>Manganosegelaterite</td>
<td>88-038</td>
<td>Montesommaite</td>
</tr>
<tr>
<td>84-072</td>
<td>Bobfergusonite</td>
<td>88-041</td>
<td>Tuliokite</td>
</tr>
<tr>
<td>84-083</td>
<td>Wawayandaithe</td>
<td>88-043</td>
<td>Wawawayandaithe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88-045</td>
<td>Geminite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88-046</td>
<td>Girvasite</td>
</tr>
<tr>
<td>1985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-001</td>
<td>Montroyalite</td>
<td>88-051</td>
<td>Baumarhauerite</td>
</tr>
<tr>
<td>85-024</td>
<td>Watkinsonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-025</td>
<td>Moidite-(Y)</td>
<td>88-052</td>
<td>Allauivite</td>
</tr>
<tr>
<td>85-050</td>
<td>Thornsaithe</td>
<td>88-053</td>
<td>Wilkinsonite</td>
</tr>
<tr>
<td>85-052</td>
<td>Petrukte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-057</td>
<td>Cabriite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86-006</td>
<td>Protoferro-</td>
<td>89-001</td>
<td>Yingjiangte</td>
</tr>
<tr>
<td></td>
<td>anthophyllite</td>
<td>89-002</td>
<td>Lishizhenite</td>
</tr>
<tr>
<td>86-007</td>
<td>Protomanganoferro-</td>
<td>89-004</td>
<td>Vyalsovite</td>
</tr>
<tr>
<td></td>
<td>anthophyllite</td>
<td>89-006</td>
<td>Roschchinite</td>
</tr>
<tr>
<td>86-024</td>
<td>Ferrilotharmeyerite</td>
<td>89-007</td>
<td>Toyohaithe</td>
</tr>
<tr>
<td>86-025</td>
<td>Mummeite</td>
<td>89-008</td>
<td>Calcio-anychlyte-(Nd)</td>
</tr>
<tr>
<td>86-027</td>
<td>Makovickyte</td>
<td>89-009</td>
<td>Boggsite</td>
</tr>
<tr>
<td>86-028</td>
<td>Poudretteite</td>
<td>89-010</td>
<td>Dmisteinbergite</td>
</tr>
<tr>
<td>86-033</td>
<td>Skippenite</td>
<td>89-011</td>
<td>Jollifite</td>
</tr>
<tr>
<td>86-043</td>
<td>Gricite</td>
<td>89-013</td>
<td>Damaarte</td>
</tr>
<tr>
<td>86-046</td>
<td>Potassium-fluor-</td>
<td>89-015</td>
<td>Rorisite</td>
</tr>
<tr>
<td></td>
<td>richterite</td>
<td>89-017</td>
<td>Cheremnychkite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-018</td>
<td>Kuksite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-023</td>
<td>Mangangordonite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-024</td>
<td>Belendorffite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-025</td>
<td>Lintsite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-026</td>
<td>Namansilite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-027</td>
<td>Boromuscovite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-028</td>
<td>Francisite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-030</td>
<td>Raditkeite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-031</td>
<td>Strontiopiemontite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-032</td>
<td>Astrocyanite-(Ce)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-033</td>
<td>Znuacalite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-034</td>
<td>Lévyclaudicte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-037</td>
<td>Tschnichcheidt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-038</td>
<td>Hejtsmanite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-039</td>
<td>Mangyanichchite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-040</td>
<td>Strontiowhitlockite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-042</td>
<td>Trimounslite-(Y)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-043</td>
<td>Yoshiokaite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-044</td>
<td>Vasilite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-045</td>
<td>Szymański</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-046</td>
<td>Olekminskite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-049</td>
<td>Parafransolettnerie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-050</td>
<td>Rouvilleite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-086</td>
<td>Arupite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-011</td>
<td>Lithiowodginite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-014</td>
<td>Leningradite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-022</td>
<td>Buckhornite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-023</td>
<td>Wedingite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-028</td>
<td>Edgarbaulexyite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89-029</td>
<td>Orlymanite</td>
</tr>
<tr>
<td>Code</td>
<td>Name</td>
<td>Code</td>
<td>Name</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>91-010</td>
<td>Harrisonite</td>
<td>92-018</td>
<td>Paranite-(Y)</td>
</tr>
<tr>
<td>91-012</td>
<td>Vistepite</td>
<td>92-019</td>
<td>Ravatite</td>
</tr>
<tr>
<td>91-013</td>
<td>Tiettaite</td>
<td>92-020</td>
<td>Fluororichterite</td>
</tr>
<tr>
<td>91-014</td>
<td>Ershovite</td>
<td>92-022</td>
<td>Juanitaite</td>
</tr>
<tr>
<td>91-015</td>
<td>Megacyclite</td>
<td>92-024</td>
<td>Kusachite</td>
</tr>
<tr>
<td>91-016</td>
<td>Mozartite</td>
<td>92-025</td>
<td>Micalpineite</td>
</tr>
<tr>
<td>91-017</td>
<td>Sennigite</td>
<td>92-026</td>
<td>Charmarite</td>
</tr>
<tr>
<td>91-018</td>
<td>Trembathite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-019</td>
<td>Fetiasite</td>
<td>92-027</td>
<td>Charmarite</td>
</tr>
<tr>
<td>91-020</td>
<td>Krasnovite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-021</td>
<td>Swakmoite</td>
<td>92-028</td>
<td>Quintinite-2H</td>
</tr>
<tr>
<td>91-022</td>
<td>Kosnarite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-023</td>
<td>Mccrillinite</td>
<td>92-029</td>
<td>Quintinite-37</td>
</tr>
<tr>
<td>91-024</td>
<td>Coquandite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-025</td>
<td>Watanabeite</td>
<td>92-030</td>
<td>Caresite</td>
</tr>
<tr>
<td>91-026</td>
<td>Thèrèsemagnanite</td>
<td>92-031</td>
<td>Sazykinaite-(Y)</td>
</tr>
<tr>
<td>91-027</td>
<td>Fluorbrillihite-(Ce)</td>
<td>92-032</td>
<td>Kormite</td>
</tr>
<tr>
<td>91-028</td>
<td>Leakeite</td>
<td>92-033</td>
<td>Hennomartinite</td>
</tr>
<tr>
<td>91-029</td>
<td>Bottinoite</td>
<td>92-034</td>
<td>Foitite</td>
</tr>
<tr>
<td>91-030</td>
<td>Parkinsonite</td>
<td>92-035</td>
<td>Magnesiostaurolite</td>
</tr>
<tr>
<td>91-031</td>
<td>Vonbezingite</td>
<td>92-037</td>
<td>Zdenekite</td>
</tr>
<tr>
<td>91-032</td>
<td>Bernaliite</td>
<td>92-040</td>
<td>Gaultite</td>
</tr>
<tr>
<td>91-033</td>
<td>Hunchunite</td>
<td>92-041</td>
<td>Dorallcharite</td>
</tr>
<tr>
<td>91-034</td>
<td>Fontanite</td>
<td>92-042</td>
<td>Baksanite</td>
</tr>
<tr>
<td>91-035</td>
<td>Mitryevaite</td>
<td>92-043</td>
<td>Rabejacite</td>
</tr>
<tr>
<td>91-036</td>
<td>Hibbingite</td>
<td>92-044</td>
<td>Ternovite</td>
</tr>
<tr>
<td>91-037</td>
<td>Borodaevite</td>
<td>92-045</td>
<td>Kintoreite</td>
</tr>
<tr>
<td>91-038</td>
<td>Lindqvistite</td>
<td>92-046</td>
<td>Rosenbergite</td>
</tr>
<tr>
<td>91-042</td>
<td>Tsaregorodtsevite</td>
<td>92-048</td>
<td>Petersenite-(Ce)</td>
</tr>
<tr>
<td>91-043</td>
<td>Stibioculusite</td>
<td>92-050</td>
<td>Magnesiodumortierite</td>
</tr>
<tr>
<td>91-044</td>
<td>Germanocalusite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-045</td>
<td>Samfowlerite</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>91-046</td>
<td>withdrawn*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-047</td>
<td>Fangite</td>
<td>93-001</td>
<td>Calciourbankite</td>
</tr>
<tr>
<td>91-048</td>
<td>Mineevite-(Y)</td>
<td>93-002</td>
<td>Ernenickelite</td>
</tr>
<tr>
<td>91-050</td>
<td>Vicanite-(Ce)</td>
<td>93-003</td>
<td>Alarsite</td>
</tr>
<tr>
<td>91-051</td>
<td>Tsimirite</td>
<td>93-004</td>
<td>Alumoklyuchevskite</td>
</tr>
<tr>
<td>91-052</td>
<td>Kieftlite</td>
<td>93-005</td>
<td>Strakhovite</td>
</tr>
<tr>
<td>91-053</td>
<td>Brianyoungite</td>
<td>93-006</td>
<td>Tetrarooseveltite</td>
</tr>
<tr>
<td>91-054</td>
<td>Abenakite-(Ce)</td>
<td>93-008</td>
<td>Barberiite</td>
</tr>
<tr>
<td>91-055</td>
<td>Khristovite-(Ce)</td>
<td>93-009</td>
<td>Sphaerobisomoite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93-010</td>
<td>Chladniiite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93-011</td>
<td>Szenicsite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93-012</td>
<td>Scandiohabingtonite</td>
</tr>
<tr>
<td>92-001</td>
<td>Mahlmoosite</td>
<td>93-013</td>
<td>Karusugite</td>
</tr>
<tr>
<td>92-002</td>
<td>Cannonite</td>
<td>93-016</td>
<td>Mayingite</td>
</tr>
<tr>
<td>92-003</td>
<td>Antimonselite</td>
<td>93-017</td>
<td>Gaotaite</td>
</tr>
<tr>
<td>92-005</td>
<td>Seedite</td>
<td>93-018</td>
<td>Shuangfengite</td>
</tr>
<tr>
<td>92-006</td>
<td>Widgiemoortalhalite</td>
<td>93-019</td>
<td>Pinguichte</td>
</tr>
<tr>
<td>92-008</td>
<td>Qiliashanite</td>
<td>93-020</td>
<td>Carolruizite</td>
</tr>
<tr>
<td>92-010</td>
<td>Fringleite</td>
<td>93-021</td>
<td>Fuenzaldaite</td>
</tr>
<tr>
<td>92-011</td>
<td>Ruitenbergerite</td>
<td>93-022</td>
<td>Tuzlaite</td>
</tr>
<tr>
<td>92-012</td>
<td>Poldervaardite</td>
<td>93-023</td>
<td>Vladvetsite</td>
</tr>
<tr>
<td>92-013</td>
<td>Petitjeanite</td>
<td>93-024</td>
<td>Wycheproofite</td>
</tr>
<tr>
<td>92-014</td>
<td>Nickenichite</td>
<td>93-025</td>
<td>Jentschite</td>
</tr>
<tr>
<td>92-015</td>
<td>Mikasaite</td>
<td>93-026</td>
<td>Fluoro-ferro-leakeite</td>
</tr>
<tr>
<td>92-016</td>
<td>Gatehouseite</td>
<td>93-027a</td>
<td>Telluronevskite</td>
</tr>
<tr>
<td>92-017</td>
<td>Morimotoite</td>
<td>93-028</td>
<td>Yuanjiangite</td>
</tr>
</tbody>
</table>
94-031 = Ilitisite
94-032 = Nierite
94-033 = Sigismundite
94-034 = Magnesiocoulsonite
94-035 = Mahnetrite
94-036 = Hanawaltite
94-038 = Quadratite
94-043 = Jensenite
94-045 = Stanškite
94-046 = Potassicpargasite
94-047 = Sorousite
94-048 = Androsite-(Ca)
94-049 = Koragöte
94-050 = Frankamenite
94-051 = Saddlesbackite
94-052 = Odintsovite
94-053 = Natroxalate
94-054 = Gottardiite
94-055 = Wesselsite
94-056 = Fetellite
94-057 = Dessauite
94-058 = Noéhensonite
94-059 = Fluoro-edenite
94-096 = Fetellite
95-001 = Benauite
95-002 = Benyacarite
95-003 = Malanite
95-005 = Strontiomelane
95-006 = Laforètite
95-007 = Oenite
95-009 = Sudovikovite
95-011 = Lesingite
95-012 = Yvonite
95-013 = Feinglosite
95-014 = Penobsquisite
95-015 = Ternesite
95-016 = Fianelite
95-017 = Edgarite
95-018 = Ferrocodelonite
95-019 = Ferro-aluminoedonelite
95-021 = Roslaite
95-022 = Meurigite
95-023 = Belovite-(La)
95-024 = Isolueshite
95-025 = Natroglaucecerinite
95-026 = Terranovaita
95-027 = Averievite
95-028 = Rambergite
95-029 = Clerite
95-030 = Christelite
95-031 = Vuoriyavite
95-032 = Hexaferrum
95-033 = Intersilite
95-034 = Pyatenkoite-(Y)

95-035 = Niobocarbide
95-036 = Deloneite-(Ce)
95-037 = Grattarolaite
95-038 = Rodilicoite
95-039 = Utahite
95-040 = Kukharenkoite-(Ce)
95-041 = Damiaioite
95-042 = Yixunite
95-043 = Jedwabite
95-044 = Chrombismite
95-045 = Mereheadite
95-046 = Ferrorhodsite
95-047 = Chloromenite
95-048 = Georgereickensite
95-049 = Barquillite
95-050 = Parabisbrskite
95-051 = Velikite
95-052 = Kuzelite
95-053 = Changchengite
95-054 = Pushcharovskite
95-055 = Tatsianaite
95-056 = Coskrenite-(Ce)
95-057 = Levinsomite-(Y)
95-058 = Rubicate
95-059 = Bambfordite
95-060 = Juonmite
95-061 = Parascordite
95-062 = Carmichaelite
95-063 = Natriomolynite
96-001 = Juabite
96-002 = Piretite
96-003 = Walfordite
96-004 = Lesukite
96-005 = Chlorartinite
96-006 = Gordaite
96-007 = Kalifersite
96-008 = Stoppanite
96-009 = Brianroustonite
96-010 = Graeserite
96-012 = Caoxite
96-013 = Deliensite
96-014a = Scaninite
96-015 = Georgbokite
96-016 = Nepskoeite
96-017 = Gilmarite
96-018 = Rosmanite
96-019 = Sheldrickite
96-020 = Philolithite
96-022 = Fluorcaphite
96-023 = Kentbrooksite
96-024 = Pretulite
96-025 = Mutinaita
96-026 = Kenhsuite
96-027 = Linskite
96-028 = Galilleite
96-029 = Boralsilite
96-030 = Rhodarsenide
96-032 = Horväthite-(Y)
96-033 = Lukechangoite-(Ce)
96-034 = Raadeite
96-035 = Phosphogartrellite
96-036 = Turkestanite
96-037 = Phosphovanadylite
96-038 = Hydrowoodwardite
96-039 = Isovite
96-040 = Hjärneite
96-041 = Berezanskite
96-044 = Chrisstanleyite
96-045 = Mereheadite
96-047 = Ferrorhodsite
96-048 = Chloromenite
96-049 = Georgereickensite
96-050 = Barquillite
96-051 = Parabisbrskite
96-052 = Velikite
96-053 = Kuzelite
96-054 = Haggertyite
96-055 = Zugshunsite-(Ce)
96-056 = Coskrenite-(Ce)
96-057 = Levinsonite-(Y)
96-058 = Rubicate
96-059 = Bambfordite
96-060 = Juonmite
96-061 = Parascordite
96-062 = Carmichaelite
96-063 = Natriomolynite
96-064 = Coparsite
96-065 = Zugshunsite-(Ce)
96-066 = Coskrenite-(Ce)
96-067 = Levinsonite-(Y)
96-068 = Rubicate
96-069 = Bambfordite
96-070 = Tsugaruite
96-071 = Calbazarite
96-072 = Pseudosinhalite
96-073 = Canonerovite
96-074 = Shibkovite
96-075 = Zaccagnaita
96-076 = Grumiplucite
96-077 = Andyrobertsite
96-078 = Calcio-andyrobertsite
96-079 = Niedermayrite
96-080 = Blatonite
96-081 = Wiluite
96-082 = Cobaltlootharmeyerite
96-083 = Palladodymite
96-084 = Miassite
96-085 = Polkanovite
96-086 = Wallkilldellite-(Fe)
96-087 = Kastningite
96-088 = Wilhelmskleinite
96-089 = Potassic-

1995

97-001 = Brendelite
97-002 = Okayamalite
97-003 = Lemmelinite-K
97-004 = Cuboargyrite
97-005 = Chadwickite
97-007 = Manganonordite-(Ce)
97-008 = Ferronordite-(Ce)
97-009 = Zalësite
97-010 = Tsgaruite
97-012 = Calbazarite
97-014 = Pseudosinhalite
97-016 = Kanonerovite
97-017 = Clinocervantite
97-018 = Shikovite
97-019 = Zaccagnaita
97-021 = Grumiplucite
97-022 = Andyrobertsite
97-023 = Calcio-andyrobertsite
97-024 = Niedermayrite
97-025 = Blatonite
97-026 = Wiluite
97-027 = Cobaltlootharmeyerite
97-028 = Palladodymite
97-029 = Miassite
97-030 = Polkanovite
97-032 = Wallkilldellite-(Fe)
97-033 = Kastningite
97-034 = Wilhelmskleinite
97-035 = Potassic-

1996

1997
97-037	Woolridgeite
97-038	Batiferite
97-040	Brinrobertsite
97-041	Changeite
97-042	Pillaita
97-043	Suredaite
97-044	Akimotoite
97-045	Simmonsite
97-047	ThomasClarkite-(Y)
97-048	Schaferite
97-049	Haigerachite
97-050	Nabiasite
97-051	Sicherite
98-001	Rollandite
98-028	Bleasdaleite
99-018	Sodiferite
98-039	Vergasovaite
98-010	Silvialite
98-011	Gladiusite
98-012	Theoparacelsite
98-013	Khaidarkanite
98-014	Zingcartrellite
98-015	Rappoldite
98-016	Neustadtelite
98-017	Brandholzite
98-019	Korobitsynite
98-023	Nickelphosphide
98-024	Ekaité
98-025	Esperanzaüte
98-026	Zincwoodwardite
98-026a	Zincwoodwardite
98-027	Khmaralite
98-028	Ferriotitanowodginite
98-029	Polyakovite-(Ce)
98-030	Formicaïte
98-031	Vajdakite
98-033	Zincalstibite
98-034	Itoigawaite
98-035	Symseite
98-036	Sidiwersite
98-037	Magnesioföitite
98-038	Orlandiite
98-039	Lužacite
98-042	Khomukovite
98-043	Manganohkomyakovite
98-044	Krettnicheite
98-045	Moëloïte
98-046	Obertiite
98-047	Bariosincosite
98-048	Springcreekite

HISTORY OF THE COMMISSION ON NEW MINERALS AND MINERAL NAMES

98-049	Xenotime-(Yb)
99-040	Chabazite-Sr
98-050a	Labuntsovite-Mg
98-051	Labuntsovite-Fe
98-052a	Lennineinite-Ba
98-054	Belloite
98-055	Rengeite
98-056	Fluoro-magnesio-afvedsonite
98-057	Kapitsaite-(Y)
98-058	Kuzmenkoite
98-059	Bismutoxyrochlore
98-060	Mozgovaite
98-061	Sodic-ferripedrizite
98-062	Arakiite
98-063	Kozoiite-(Nd)
98-064	Oneillite
98-065	Hydroxylchlorohumite
98-066	Gottlobite
98-067	Urusovite
98-069	Romeburgite
98-070	Bederite
99-002	Tegengrenite
99-003	Clearcreekite
99-005	Bakchisaraitsevite
99-006	Remondite-(La)
99-007	Svenekite
99-008	Nickellotharmeyerite
99-009	Johnmontaite
99-010	Rouaite
99-011	Tamaïte
99-012	Cerchiaräte
99-013	Florenskyite
99-014	Londonite
99-015	Bigcreekite
99-016	Henrymeyerite
99-017	Litviniske
99-018	Cronusite
99-019a	Bichlrite
99-020a	Adamsite-(Y)
99-021	Dukeite
99-022	Juanaïte
99-023	Brodtkorbite
99-024a	Chromceladonite
99-025	Ominelliite
99-026	Ferrokinoshitalite
99-027	Schneebergite
99-028	Nickelshneebergite
99-029	Cobaltsumcorite
99-030	Lukrahnite
99-031	Manganonaujakasite
99-032	Manganohkomyakovite
99-033	Michelenite
99-034	Petterdite
99-035	Moganite
99-036	Ertitite
99-037	Manganoujakasite
99-038	Niobokuplestike
99-039	Gmelinite-K
TABLE 4. PUBLISHED IMA NUMBER OF MINERAL SPECIES NOT YET DESCRIBED IN THE LITERATURE WITHIN TWO-YEAR TIME LIMIT SINCE APPROVAL

<table>
<thead>
<tr>
<th>IMA Number</th>
<th>Mineral Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-007</td>
<td>Parakuzmenkoite-Fe</td>
</tr>
<tr>
<td>2001-027</td>
<td>Decrespignyte-(Y)</td>
</tr>
<tr>
<td>2001-052</td>
<td>Cobaltarthurite</td>
</tr>
<tr>
<td>2001-008</td>
<td>Megakalsilite</td>
</tr>
<tr>
<td>2001-028</td>
<td>Karupmollerite</td>
</tr>
<tr>
<td>2001-053</td>
<td>Keilite</td>
</tr>
<tr>
<td>2001-009</td>
<td>Gjerdingenite-Fe</td>
</tr>
<tr>
<td>2001-029</td>
<td>Hoganie</td>
</tr>
<tr>
<td>2001-054</td>
<td>Sewardite</td>
</tr>
<tr>
<td>2001-010</td>
<td>Tillmannsite</td>
</tr>
<tr>
<td>2001-030</td>
<td>Paceite</td>
</tr>
<tr>
<td>2001-057</td>
<td>Vitinrite</td>
</tr>
<tr>
<td>2001-012</td>
<td>Telyushenkoite</td>
</tr>
<tr>
<td>2001-032</td>
<td>Ferrripedrizite</td>
</tr>
<tr>
<td>2001-059</td>
<td>Martinite</td>
</tr>
<tr>
<td>2001-013</td>
<td>Redite</td>
</tr>
<tr>
<td>2001-033</td>
<td>Pellouxite</td>
</tr>
<tr>
<td>2001-061</td>
<td>Tischendorfite</td>
</tr>
<tr>
<td>2001-014</td>
<td>Tweeddaleite</td>
</tr>
<tr>
<td>2001-034</td>
<td>Gramacciolite</td>
</tr>
<tr>
<td>2001-063</td>
<td>Shirokshinite</td>
</tr>
<tr>
<td>2001-015</td>
<td>Emilite</td>
</tr>
<tr>
<td>2001-035</td>
<td>Tedhadleyite</td>
</tr>
<tr>
<td>2001-016</td>
<td>Salzburrite</td>
</tr>
<tr>
<td>2001-037</td>
<td>Kuzmenkoite-Zn</td>
</tr>
<tr>
<td>2001-018</td>
<td>Lunamuchangite</td>
</tr>
<tr>
<td>2001-038</td>
<td>Gurtkovaite-Mn</td>
</tr>
<tr>
<td>2001-020</td>
<td>Mottanaita-(Ce)</td>
</tr>
<tr>
<td>2001-040</td>
<td>Orthominasragrite</td>
</tr>
<tr>
<td>2001-021</td>
<td>Ciprianiite</td>
</tr>
<tr>
<td>2001-041</td>
<td>Bobtraillite</td>
</tr>
<tr>
<td>2001-024</td>
<td>Cavitoite</td>
</tr>
<tr>
<td>2001-042</td>
<td>Cerite-(La)</td>
</tr>
<tr>
<td>2001-026</td>
<td>Manganotharmeyerite</td>
</tr>
<tr>
<td>2001-051</td>
<td>Walkerite</td>
</tr>
</tbody>
</table>

Acknowledgments

I am indebted to Drs. Giovanni Ferraris, Joseph A. Mandarino and Ernest H. Nickel for answering my queries with a bounty of information, as well as suggestions for improvement. I also thank Robert F. Martin and John L. Jambor for their help. Special thanks to Marco Ciriotti for checking the list of published IMA numbers, and to my daughter Alexandra for clerical help.
REFERENCES

OTHER ITEMS CONSULTED IN THE PREPARATION OF THIS REPORT

______ & PIERROT, R. (1970): Commission des nouveaux minéraux et des noms de minéraux de l’Association...

Received August 10, 2002, revised manuscript accepted October 5, 2002.